Welding Technology for Advanced BWR
- Potential Cooperation with Polish Companies for first Nuclear Power Plant in Poland -

October 17, 2018
Yu Kuwada
Hitachi-GE Nuclear Energy, Ltd.
Today’s Main Topics

1. Introduction
 1-1 Hitachi Construction Experience
 1-2 Outline of ABWR Building

2. Fabrication Technologies of Reactor Internals (RIN)
 2-1 Outline of Reactor Internals (RIN)
 2-2 Applicable Codes and Standards for RIN
 2-3 Fabrication Sequence of RIN (Core Shroud)
 2-4 Key Technologies for RIN Fabrication

3. Welding Quality Control
 3-1 Potential Cooperation in Poland
 3-2 Quality Control for Welding
 3-3 Supply Chain Establishment
1. Introduction
 1-1 Hitachi Construction Experience
 1-2 Outline of ABWR Building

2. Fabrication Technologies of Reactor Internals (RIN)
 2-1 Outline of Reactor Internals (RIN)
 2-2 Applicable Codes and Standards for RIN
 2-3 Fabrication Sequence of RIN (Core Shroud)
 2-4 Key Technologies for RIN Fabrication

3. Welding Quality Control
 3-1 Potential Cooperation in Poland
 3-2 Quality Control for Welding
 3-3 Supply Chain Establishment
1. Instruction
1-1 Hitachi Construction Experience

- More than 40 years of continuous experience
- Almost achieved 20,000 MWe of total power

Domestic Production Phase Improvement and Standardization Phase Advanced BWR(ABWR) Phase

- Under Construction
 - OHMA - 1*
 - SHIMANE - 3
 - SHIKA - 2
 - HAMAOKA - 5*
 - ONAGAWA - 3*

- Domestic Production
 - KASHIWAZAKI-KARIWA 7*
 - KASHIWAZAKI-KARIWA 6*
 - KASHIWAZAKI-KARIWA 4
 - KASHIWAZAKI-KARIWA 6*
 - KASHIWAZAKI-KARIWA 5
 - SHIMANE - 2
 - HAMAOKA - 4*
 - KASHIWAZAKI-KARIWA - 5
 - HAMAOKA - 3*
 - FUKUSHIMA II - 4
 - FUKUSHIMA II - 2
 - HAMAOKA - 1*
 - HAMAOKA - 2*
 - TOKAI - 2*
 - FUKUSHIMA I - 4
 - FUKUSHIMA I - 1*
 - SHIMANE - 1
 - FUKUSHIMA I - 1*
 - TSURUGA - 1*

© Hitachi-GE Nuclear Energy, Ltd. 2018. All rights reserved.
1. Instruction
1-2 Outline of ABWR Building

Cross-sectional Model of ABWR Building

① Reinforced Concrete Containment Vessel
② Reactor Pressure Vessel
③ Steam Dryer
④ Steam Separator
⑤ High Pressure Core Flooder Sparger
⑥ Fuel Assembly
⑦ Control Rod
⑧ Reactor Internal Pump
⑨ Fine Motion Control Rod Drive System
⑩ Control Rod Drive Mechanism Handling Machine
⑪ Main Steam Piping
Today’s Main Topics

1. Introduction
 1-1 Hitachi Construction Experience
 1-2 Outline of ABWR Building

2. Fabrication Technologies of Reactor Internals (RIN)
 2-1 Outline of Reactor Internals (RIN)
 2-2 Applicable Codes and Standards for RIN
 2-3 Fabrication Sequence of RIN (Core Shroud)
 2-4 Key Technologies for RIN Fabrication

3. Welding Quality Control
 3-1 Potential Cooperation in Poland
 3-2 Quality Control for Welding
 3-3 Supply Chain Establishment
Since RIN has the important roles such as **dehumidifying water vapor**, **supporting fuel** and **forming reactor coolant flow channels in RPV**, its required high quality and high precision fabrication.
(1) Applicable standard for RIN:
ASME Section Ⅲ – Division 1 Subsection NG “Core Support Structures”
(JSME S-NC1 for Japanese domestic plant)

Abstract of Applicable ASME Code for RIN

<table>
<thead>
<tr>
<th>Article</th>
<th>Content</th>
<th>Related Section</th>
</tr>
</thead>
</table>
| NG-2000 | Material
 Especially important sub - article
 NG-2400 : Welding Material | Section II Materials Part C |
| NG-3000 | Design | |
| NG-4000 | Fabrication and Installation
 Especially important sub - article
 NG-4200 : Forming, Fitting and Aligning
 NG-4300 : Welding Qualifications
 NG-4400 : Rules Governing Marking, Examination and Repairing Welds
 HG-4600 : Heat Treatment | Section IX Welding and Brazing Qualification |
| NG-5000 | Examination | Section V |
| NG-8000 | Nameplate, Stamping with Certification Mark and Report | |

Note: Hitachi-GE holds the N-type certificate to comply with above ASME codes.
(2) Qualification of Welding Procedures for RIN (Austenitic stainless steel)

<table>
<thead>
<tr>
<th>Requirements</th>
<th>ASME Sec. III NG-4300 ASME Sec. IX</th>
<th>EN ISO 15607 ISO 15614-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Butt joint with full penetration</td>
<td>Specified</td>
<td>Specified</td>
</tr>
<tr>
<td>② Fillet weld</td>
<td>Specified for nonpressure-retaining fillet welds, but not mandatory (① qualify ②)</td>
<td>Specified</td>
</tr>
<tr>
<td>③ T-joint with full penetration</td>
<td>③ is included in ①</td>
<td>Specified</td>
</tr>
<tr>
<td>④ Branch connection with full penetration</td>
<td>④ is included in ①</td>
<td>Specified</td>
</tr>
</tbody>
</table>
(3) Qualification of Welders for RIN

<table>
<thead>
<tr>
<th>Requirements</th>
<th>ASME Sec.III NG-4300 ASME Sec.IX</th>
<th>EN ISO 9606-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Butt weld</td>
<td>Specified</td>
<td>Specified</td>
</tr>
<tr>
<td>② Fillet weld</td>
<td>Specified (① qualify ②)</td>
<td>Specified</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(① do not qualify ② or vice versa)</td>
</tr>
<tr>
<td>③ Branch connection</td>
<td>—</td>
<td>(a) For angle $\geq 60^\circ$, qualified by butt welds in pipes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) For angle $< 60^\circ$, qualified by product standard</td>
</tr>
</tbody>
</table>
2. Fabrication Technologies of RIN

2-3 Fabrication Sequence of RIN

Upper Shroud

Lower Shroud

Upper Flange (SUS316L)

Lower Flange (SUS316L)

Lower Shell (Ⅰ) (SUS316L)

Lower Shell (Ⅱ) (SUS316L)

CUTTING → WELDING → MACHINING → WELDING → DHT → MACHINING

NDI: Nondestructive Inspection
DHT: Dimensional Stability Heat Treatment
WITNESS: Witness Inspection
(1) Mitigation of Stress Corrosion Crack (SCC) Risk
(a) Specifying welding materials:
 • Low carbon material (Stainless steel)
(b) Specifying cold work process:
 • Managing strain ratio and surface hardness
 • Polishing after grinding work (Removing hardened layer)
(c) Mitigating residual tensile stress caused by welding:
 • Water Jet Peening

(2) High Quality and High Productivity
Applying narrow groove welding joint:
 • Lower welding heat input
 • Mitigate residual stress

(3) Dimensional Stability
Preventing in-service deformation caused by residual stress releasing:
 • Low temperature dimensional stabilizing heat treatment

Items (1)(a) and (2) would be detailed on the following pages.
(1) Mitigation of SCC Risk

(a) Specifying Welding Materials for Low Carbon Material (Stainless Steel)

Typical welding materials specification (for Japanese ABWR plant)

1. Chemical component: \(C \leq 0.020 \% \) (Hitachi Spec. to prevent sensitization)
2. Mechanical property: Equal to or greater than the base material spec.

Specification of Chemical Component of Stainless Steel Welding Materials

<table>
<thead>
<tr>
<th>Japanese Industrial Standards</th>
<th>Chemical Component (Mass Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C*</td>
<td>Si</td>
</tr>
<tr>
<td>GTAW JIS Z 3321 YS 316L **</td>
<td>(\leq 0.020)</td>
</tr>
<tr>
<td>SMAW JIS Z 3221 ES 316L ***</td>
<td>(\leq 0.020)</td>
</tr>
<tr>
<td>SAW JIS Z 3324 S 316L ***</td>
<td>(\leq 0.020)</td>
</tr>
</tbody>
</table>

GTAW: Gas Metal Arc Welding
SMAW: Shielded Metal Arc Welding (Manual metal-arc welding)
SAW: Submerged Arc Welding

*: Hitachi’s specification
**: Filler metal
***: Deposited metal
2. Fabrication Technologies of RIN
2-4 Key Technologies for RIN Fabrication

(1) Mitigation of SCC Risk
 (a) Specifying Welding Materials for Low Carbon Material (Stainless Steel)

 ASME Sec.III NG-2400 “Welding Material” requirement

 ① Chemical analysis test
 Analyzed elements for Chromium and Cr-Ni stainless material
 C, Cr, Mo, Ni, Mn, Si, P, S, V, Cb+Ta, Ti, Cu
 (No specific elements, only report)

 ② Delta Ferrite Determination
 (i) Method
 • Magnetic measuring instrument
 and
 • Chemical analysis
 (WRC-1992 Diagram)
 (ii) Acceptance standards
 Minimum 5 FN
2-4 Key Technologies for RIN Fabrication (2) High Quality and High Productivity

Application of Narrow Groove Welding Joint

Table: Available welding method

<table>
<thead>
<tr>
<th>Welding Method</th>
<th>Example of Application Joint</th>
<th>Welding position</th>
<th>Deposition efficiency (1>2 >3 >4)</th>
<th>Total Welding activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASER welding (Super Narrow groove)</td>
<td>Longitudinal joint and Circumferential joint of shell</td>
<td>Flat, Horizontal & Vertical position</td>
<td>1 High Efficiency due to narrow groove</td>
<td>© Dedicated facility</td>
</tr>
<tr>
<td>Submerged arc welding (SAW)</td>
<td>Welding of parts such as lag block</td>
<td>Flat position</td>
<td>2 High current (high heat input)</td>
<td>△ Setup of shell that are tailored to flat position</td>
</tr>
<tr>
<td>Fully mechanized GTAW welding (Narrow groove)</td>
<td></td>
<td>All position</td>
<td>3 High Efficiency due to narrow groove</td>
<td>× Setting of welding head rail</td>
</tr>
<tr>
<td>Manual metal-arc welding (SMAW)</td>
<td></td>
<td>All position</td>
<td></td>
<td>△△ △△</td>
</tr>
<tr>
<td>Manual GTAW welding</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

Deposition efficiency (1>2 >3 >4):
1. High Efficiency due to narrow groove
2. High current (high heat input)
3. High Efficiency due to narrow groove
4.
5.

Total Welding activity:
- Good (©)
- Setup of shell that are tailored to flat position (△)
- Setting of welding head rail (△△)
- Dedicated facility (©)
- Flat position (○)
Application of Narrow Groove Welding Joint

Historical Trend of Narrow Groove Welding for Thick Material

- Material thickness of 50 mm

Note:
- SAW: Submerged Arc Welding
- GTAW: Gas Tungsten Arc Welding
- GMAW: Gas Metal Arc Welding
- LBW: Laser Beam Welding

- V-shape groove
- Narrow groove (GTAW, GMAW)
- Super narrow groove (LBW)
- Narrower V-shape groove (SAW, GTAW)

- Efficiency Upgrade
- Number of Weld Pass

- 1970: SAW
- 1980: GTAW, GMAW
- 1990: Narrow groove (GTAW, GMAW)
- 2000: Super narrow groove (LBW)
- 2010: Narrower V-shape groove (SAW, GTAW)

Mitigation of Welding Distortion

Groove Cross Section

Wide

Narrow

© Hitachi-GE Nuclear Energy, Ltd. 2018. All rights reserved.
2-4 Key Technologies for RIN Fabrication
(2) High Quality and High Productivity

◆ Application of Narrow Groove Welding Joint
Improvement of fabrication sequence

(before improvement) Longitudinal joint welding procedure by **SAW**
Turn over the product for each step in order to reduce weld deformation

![Diagram illustrating the welding process](image)

Weld (1) in flat position

Weld (2) in flat position

Weld (3) in flat position

Grinding & Polishing

Rolling

Outside welding

Re-Rolling

Modification of welding deformation

Repeating weld(1)~(3) setting of weld equipment and shell rotation

Opposite side fully

Remaining fully

Half depth

© Hitachi-GE Nuclear Energy, Ltd. 2018. All rights reserved.
2-4 Key Technologies for RIN Fabrication
(2) High Quality and High Productivity

◆ Application of Narrow Groove Welding Joint

Improvement of fabrication sequence

➢ To achieve Narrow Groove → Mechanized GTAW / LASER welding → Vertical Position

(after improvement)

Longitudinal joint welding procedure by Mechanized GTAW or LASER welding

Fit Up

Weld in Vertical position

Re-Rolling

Assembled in vertical placement

Inside/outside alternately

Modification of welding deformation

Fig. LASER welding (outside)

Improvement History of fabrication sequence

<table>
<thead>
<tr>
<th>Welding method transition</th>
<th>Submerged arc welding (SAW)</th>
<th>Mechanized TIG welding (narrow groove joint)</th>
<th>LASER welding (super narrow groove joint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved points</td>
<td>1. Reduce welding distortion by narrow groove and alternately build-up</td>
<td>2. Save setup time by assembling and welding in vertical placement</td>
<td></td>
</tr>
</tbody>
</table>
Today’s Main Topics

1. Introduction
 1-1 Hitachi Construction Experience
 1-2 Outline of ABWR Building

2. Fabrication Technologies of Reactor Internals (RIN)
 2-1 Outline of Reactor Internals (RIN)
 2-2 Applicable Codes and Standards for RIN
 2-3 Fabrication Sequence of RIN (Core Shroud)
 2-4 Key Technologies for RIN Fabrication

3. Welding Quality Control
 3-1 Potential Cooperation in Poland
 3-2 Quality Control for Welding
 3-3 Supply Chain Establishment
Feature of NPP Construction

What’s Demanded for NPP

<table>
<thead>
<tr>
<th>Safety</th>
<th>Reliability</th>
<th>Profitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Safety Culture</td>
<td>Quality Control</td>
<td></td>
</tr>
</tbody>
</table>

“Construction” is a key matter of the NPP business.

What’s the feature of NPP construction?

- Long Period Work
- Large Work Volume
- Many Documents & Record
- Traceability
- Many Interfaces with Project Participants

Cooperation with Polish Companies for the First NPP in Poland

- Quality Control required for NNP
- Highest standards of Nuclear Safety Culture
Quality of welding depends on following:

- Establishment of Quality Management System for welding and relevant process
- Adequacy of Welding Process Specification (WPS) based on Welding Procedure Qualification (PQR)
- Adequate assignment of **Welding personnel** who have necessary capabilities
 - Welder and Welding Operator
 - Welding Engineer
 - Examiner and Inspector
 - Welding Supervisor
- Adequate test and inspection

(1) ISO 9000 family “Quality Management Systems”
(2) ISO 3834 “Quality Requirements for Fusion Welding of Metallic Materials”
3-2 Quality Control for Welding
(2) QC in accordance with Codes and Standards

(a) Quality Control Required for NPP

QA Grade of Item

Item : Product, Equipment, Piping etc.

* QA Grade is identified by Hitachi’s Customer dependent on factors including, but not limited to, the Nuclear Safety Classification, engineering complexity, supply chain performance and project schedule.

Code, Standard, Guideline etc. : ISO, PED, ASME etc.

Quality Control is required in accordance with these applicable Code, Standard, Guideline etc.

Certificate

- ISO Certificate (ex. ISO 9000)
- PED Certificate**
- ASME Certificate

** PED Certificate is required for pressure equipment other than items specially designed for nuclear use.
(2) QC in accordance with Codes and Standards

(b) Quality Management System Requirement to Supplier

<table>
<thead>
<tr>
<th>Degree of QA Grade</th>
<th>QA Grade</th>
<th>ASME NQA-1</th>
<th>IAEA GSR Part 2</th>
<th>ISO 9001</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>A</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>C</td>
<td>-</td>
<td>X*1</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>If specified in a Contract, comply with the Contract</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) **ASME NQA-1 (Nuclear Quality Assurance -1)**
- "Quality Assurance Requirements for Nuclear Facility Applications"
- Regulatory standard issued and maintained by ASME.
- For QA Grade A and B, Suppliers shall comply with the applicable element of the requirement of NQA-1 for quality assurance arrangements.
- Maintaining ASME N-Type Certification is acceptable.

(2) **IAEA GSR Part 2 (General Safety Requirements Part 2)**
- "Leadership and Management for Safety"
- For QA Grade A and B, and Grade C if required in Contract, Supplier shall also comply with the requirements of IAEA GSR Part 2.
- The suppliers shall be assessed by Hitachi for compliance with IAEA GSR Part 2.

(3) **ISO 9001**
- For QA Grade C, Suppliers have the option to comply with either NAQ-1 or ISO 9001.

*1 If required in a Contract.
(2) QC in accordance with Codes and Standards

(b) Supplier Program Requirements for Welding

<table>
<thead>
<tr>
<th>QA Grade</th>
<th>ASME Code Sec. III and IX</th>
<th>ISO 15609, ISO 15614 ISO 9606-1</th>
<th>Test Lab. for PQR and WPQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>D</td>
<td>If specified in a Contract, comply with the Contract</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) **ASME Code Sec.III and IX**

- For QA Grade A and B, Supplier who perform welding shall comply with the applicable subsection requirements of ASME Code Sec.III and Sec.IX for welding.
- Where agreed with Hitachi, ISO standard specified in (2) may be applied as alternatives.

(2) **ISO 15609, ISO 15614 and ISO 9606-1**

- For QA Grade C, Supplier who perform welding shall comply with the requirements of ISO 15609, ISO 15614 (ex-EN288) for welding procedure specification (WPS) qualification, and EN ISO 9606-1 for welder qualification.
- Where agreed with Hitachi, ASME Code Sec.III and Sec.IX specified in (1) may be applied as alternatives.

(3) **Test Laboratory for PQR and WPQR**

- For QA Grade A and B, all associated tests for PQR and WPQR shall be performed by a test laboratory within the scope of its accreditation in accordance with ISO 17025.
(b) Supplier Program Requirements for NDE

<table>
<thead>
<tr>
<th>QA Grade</th>
<th>SNT-TC-1A</th>
<th>ISO 9712 (EN 473)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>D</td>
<td>If specified in a Contract, comply with the Contract</td>
<td></td>
</tr>
</tbody>
</table>

(1) **SNT-TC-1A**

- Recommended Practice “Personnel Qualification and Certification in Nondestructive Testing” issued and maintained by the American Society for Nondestructive Testing (ASNT).
- SNT-TC-1A provides guidelines for employers to establish in-house certification programs for the qualification and certification of NDE personnel.
- For QA Grade A and B, Suppliers whose personnel perform NDE shall be qualified in accordance with the recommended guidelines of SNT-TC-1A for the qualification of NDE personnel.
- When agreed with Hitachi, ISO standards (e.g. ISO 9712) may be applied as alternatives.

(2) **ISO 9712**

- For QA Grade C, Suppliers shall qualify NDE personnel in accordance with an accredited national scheme in accordance with ISO 9712.
- When agreed with Hitachi, SNT-TC-1A may by applied as alternatives.
"Hitachi-GE Nuclear Energy, Ltd. and its partner company GE-Hitachi Nuclear Energy, Ltd. have already engaged with potential Polish companies in terms of engineering, procurement and construction of new nuclear build, and will continue to engage and develop a Polish Supply Chain to maximize the involvement of Polish suppliers for the new nuclear build in Poland."
Thank you for your listening.