

INFLUENCE OF HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti-6A1-4V ALLOY PREPARED BY 3D PRINTING

Damian KALITA¹, Łukasz ROGAL¹, Marek St. WĘGLOWSKI², Jan DUTKIEWICZ¹, Tomasz DUREJKO³, Tomasz CZUJKO³

- ¹ Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Reymonta 25, 30-059 Krakow, Poland
- ² Department of the Testing of Materials Weldability and Welded Construction, Institute of Welding, Bł. Czesława 16-18, 44-100 Gliwice, Poland
- ³ Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland

INTRODUCTION

Laser Engineered Net Shaping (LENS) is an additive manufacturing technology developed for fabricating near net-shape metal parts by using a metal powder injected into a molten pool created by a focused, high-powered laser beam.

Additive manufacturing is gaining importance in the case of:

- Low production volumes
- High material cost and high machining cost
- Prototyping
- Logistics and transportation costs

AIM OF THE WORK

The aim of this work was to analyse the influence of post processing heat treatment on the microstructure and mechanical properties of Ti-6Al-4V titanium alloy prepared by Laser **Engineered Net Shaping 3D printing process.**

EXPERIMENTAL

Material Fabrication

The deposition was performed using a LENS MR7 system with a 500 W fiber laser, which has a minimum beam diameter of 200 µm at a central emission wavelength of 1070 nm.

Manufacturing parameter	Value	
Laser power	250 W	
Deposition speed	16 mm/s	
Layer thickness	50 μm	
Material	Spherical powder 45-105 µm	
Atmosphere	Argon	

Heat Treatment

Heat treatment was performed in order to improve mechanical properties of the deposited materials, according to the scheme presented below.

RESULTS

MICROSTRUCTURE OF THE AS-DEPOSITED MATERIAL

the as-deposited material elongated (up to a few millimetres), primary $\boldsymbol{\beta}$ grains are present in the centre of the wall. Inside those grains, a fine,

MICROSTRUCTURE OF THE HEAT TREATED MATERIAL

extensive growth of primary β grains. Their morphology was changed from elongated to equiaxial. Inside those grains, fine, wo-phase microstructure is observed.

MECHANICAL PROPERTIES The fracture surfaces exhibiting ductil

	22	
featu	res.	

As-deposited Heat treated Yield strength 1069 1020 - 1080 [MPa] Tensile strength 1042 1232 1100 - 1270 [MPa] Elongation [%] 8,6 6,5 8 - 13Hardness [HV] 371 ± 4 468 ± 8 380 - 420

Heat treatment leads to formation of two phase (α+β) microstructure

ACKNOWLEDGMENTS

The research was co-financed by the European Union from resources of the European ocial Fund (Project No.WND-POWR.03.02.00-00-1043/16).

CONCLUSIONS

- > In the microstructure of the as-deposited material elongated, primary β grains are observed. High cooling rate, during the process, leads to the formation of martensitic microstructure inside those grains.
- Heat treatment leads to extensive growth of primary β grains. Inside those grains, fine, two-phase $\alpha+\beta$ microstructure is observed. The α phase occurs as fine laths, while the β phase occurs as small precipitation at laths boundaries.
- Heat treatment leads to an increase of yield strength and tensile strength of the material by about 20% in comparison to as-deposited material.

REFERENCES

Hofmeister, William, et al. "Investigating solidification with the laser-engineered net shaping (LENSTM) process." Jom 51.7 (1999): 1-6.

Hedges, Martin, and Neil Calder. "Near net shape rapid manufacture & repair by LENS." Cost Effective Manufacture via Net-Shape Processing, Meeting Proceedings RTO-MP-AVT-139, Paper. 13. (2006): 1-14

CES EduPack 2011 Version 7.0.0, Cambridge, Granta Design Limited, 2011.

KONFERENCJA SPAWALNICZA

MIĘDZYNARODOWA

16-18 października 2018 r. - Sosnowiec

